Load ULog and PX4 files in Python

PX4 is the leading software standard for drones and unmanned aerial vehicles (UAVs). PX4 provides a platform for controlling autonomous flight and navigation systems.

ULog is a binary log file format used by the PX4 autopilot system for recording flight data. It captures various flight parameters such as sensor readings, GPS data, battery status, and actuator outputs.

In Nominal, ULog data is used for post-flight analysis, debugging, and performance benchmarks. This guide uses flight logs from the PX4 community hub to demonstrate an automated pipeline for ingesting ULog files into Nominal.

Download flight logs

1dataset_repo_id = 'nominal-io/px4-ulog-quadrotor'
2dataset_filename = 'PX4-quadrotor-example-log.ulg'

For convenience, Nominal hosts sample test data on Hugging Face. To download the sample data for this guide, copy-paste the snippet below.

1from huggingface_hub import hf_hub_download
2
3dataset_path = hf_hub_download(
4 repo_id=f"{dataset_repo_id}",
5 filename=f"{dataset_filename}",
6 repo_type='dataset'
7)
8
9print(f"File saved to: {dataset_path}")

(Make sure to first install huggingface_hub with pip3 install huggingface_hub).

Convert ULog to CSV

ulog2csv converts the PX4 ULog file to a folder of CSV logs:

1import subprocess
2ulog_path = dataset_path
3subprocess.run(["ulog2csv", ulog_path], capture_output=True, text=True)

List all CSV flight logs

Depending on the flight, the ULog-to-CSV converter will output ~50 CSV flight logs. To get an idea of what these log files are, we’ll print each of their file names.

1from pathlib import Path
2folder_path = Path(ulog_path).parent
3files = [file for file in folder_path.iterdir() if file.is_file()]
4
5for file in files:
6 print(file.name.strip('PX4-quadrotor-example-log'))

~50 CSV flight log names are printed.

_vehicle_land_detected_0.csv
_telemetry_status_0.csv
_vehicle_angular_velocity_0.csv
...
_vehicle_attitude_setpoint_0.csv

Inspect PX4 GPS log

Let’s inspect a single log file (..log_vehicle_gps_position_0.csv). Note that the timestamp column is common across log files and always in relative microseconds, meaning microseconds from the start of the flight or whenever the sensor began recording.

1import polars as pl
2from pathlib import Path
3
4full_path = folder_path / 'PX4-quadrotor-example-log_vehicle_gps_position_0.csv'
5
6df_gps = pl.read_csv(full_path)
7
8lat_normalized = pl.Series("lat_normalized", df_gps['lat']/10e6)
9lon_normalized = pl.Series("lon_normalized", df_gps['lon']/10e6)
10
11df_gps = df_gps.with_columns([
12 lat_normalized,
13 lon_normalized
14])
15
16df_gps.head().select(df_gps.columns[:6])
timestamptime_utc_useclatlonaltalt_ellipsoid
i64i64i64i64i64i64
96689774158193317099998947356611085190396423805471145
96890716158193317119998847356610985190398423779471119
97089357158193317139998847356610785190398423756471096
97289265158193317159998847356610585190398423687471028
97490058158193317179998847356610385190400423665471005

Let’s plot the recorded latitude vs longitude from the GPS sensor.

1import plotly.express as px
2import plotly.io as pio
3pio.templates.default = 'plotly_dark'
4
5fig = px.line(df_gps, x='lon_normalized', y='lat_normalized', width=500, height=500)
6
7fig.write_image('drone_gps_flight.svg')
8fig.show()

drone-gps-map

Upload PX4 GPS log

Connect to Nominal

Get your Nominal API token from your User settings page.

See the Quickstart for more details on connecting to Nominal from Python.

1import nominal.nominal as nm
2
3nm._config.set_token(
4 url = 'https://api.gov.nominal.io/api',
5 token = '* * *' # Replace with your Access Token from
6 # https://app.gov.nominal.io/settings/user?tab=tokens
7)
If you’re not sure whether your company has a Nominal tenant, please reach out to us.

Upload to Nominal

1import nominal.nominal as nm
2
3dataset = nm.upload_csv(
4 full_path,
5 name='PX4 GPS Sensor data',
6 timestamp_column='time_utc_usec',
7 timestamp_type='epoch_microseconds',
8)
9
10print('Uploaded dataset:', dataset.rid)

After upload, navigate to Nominal’s Datasets page (login required). You’ll see your CSV at the top!

Create PX4 log lookup table

The below script creates a dataframe with each log file’s path, start time, and end time.

1import polars as pl
2from pathlib import Path
3import traceback
4
5log_names = []
6time_range_mins = []
7time_range_maxs = []
8log_path = []
9
10for file in files:
11 full_path = folder_path / file.name
12 try:
13 df_csv = pl.read_csv(full_path)
14 if 'timestamp' in df_csv.columns:
15 log_path.append(full_path)
16 log_names.append(file.name.strip('PX4-quadrotor-example-log'))
17 time_range_mins.append(df_csv['timestamp'].min())
18 time_range_maxs.append(df_csv['timestamp'].max())
19 except:
20 pass
21
22df_log_time_ranges = pl.DataFrame({
23 "log_files": log_names,
24 "min_micro_s": time_range_mins,
25 "max_micro_s": time_range_maxs,
26 "log_path": log_path
27})

Some log files don’t have valid start and end times - we’ll remove these rows from the dataframe.

1logs_to_filter = ["_mission_result_0.csv", "_sensor_correction_0.csv", "_sensor_selection_0.csv", "_mission_0.csv"]
2df_filtered_logs = df_log_time_ranges.filter(pl.col("log_files").is_in(logs_to_filter) == False)

Finally, we’ll plot all of the log start and end times to identify any outliers.

1fig = px.scatter(df_filtered_logs.drop('log_path'),
2 x = 'log_files',
3 y = ['min_micro_s', 'max_micro_s'],
4 height = 600,
5 log_y = True,
6 title = 'Flight log start and end times')
7
8fig.update_layout(showlegend=False)
9fig.update_layout(yaxis_title='Log time span (microseconds)')
10fig.write_image('flight_log_start_and_end_times.png')
11fig.show()

flight-log-start-and-end-times

Each log’s start and end times vary slightly but are generally uniform. No sensors started mid-flight or stopped long after landing.

Extract absolute flight time

To get an absolute flight start time, we’ll use the time_utc_usec column from the GPS sensor log file.

1from datetime import datetime, UTC
2
3def convert_micro_s_to_hours_minutes_seconds(micro_s):
4 total_seconds = micro_s // 1000 // 1000
5 hours = total_seconds // 3600
6 minutes = (total_seconds % 3600) // 60
7 seconds = total_seconds % 60
8 return hours, minutes, seconds
9
10timestamp_seconds = df_gps['time_utc_usec'].min() / 1_000_000
11dt_flight_start = datetime.fromtimestamp(timestamp_seconds, UTC)
12dt_flight_duration_micro_s = df_filtered_logs['max_micro_s'].max() - df_filtered_logs['min_micro_s'].min()
13hours, minutes, seconds = convert_micro_s_to_hours_minutes_seconds(dt_flight_duration_micro_s)
14
15print(f"Flight start time in UTC: {dt}")
16print(f"Flight duration: {hours} h, {minutes} m, {seconds} s")
1Flight start time (UTC): 2020-02-17 09:52:50.999989+00:00
2Flight duration: 0 h, 2 m, 0 s

Create PX4 log run

In Nominal, Runs are containers of multimodal test data - including Datasets, Videos, Logs, and database connections.

To see your organization’s latest Runs, head over to the Runs page

We’ll use the create_run() routine to create a Run with the flight start and end times that we identified above.

1import nominal.nominal as nm
2from datetime import timedelta
3
4quadrotor_run = nm.create_run(
5 name = 'PX4 single quadrotor flight',
6 start = dt_flight_start,
7 end = dt_flight_start + timedelta(microseconds=dt_flight_duration_ms),
8 description = 'https://logs.px4.io/plot_app?log=89b87d6f-d286-4703-b36b-573191a907f1',
9)

If you head over to the Runs page on Nominal (login required), you’ll see the “PX4 single quadrotor flight” at the top:

nominal-runs-page

Bulk upload all PX4 logs

To upload all ~50 PX4 log files to the quadrotor run, we’ll iterate through the lookup table that we created and validated above.

For each row of the lookup table, we’ll call upload_csv() to upload the log file and Run.add_dataset() to associate the log file with the run.

1import traceback
2import nominal.nominal as nm
3
4rids = dict()
5
6for row in df_filtered_logs.iter_rows():
7 file_name = row[0]
8 full_path = row[3]
9 df_csv = pl.read_csv(full_path)
10 if 'timestamp' in df_csv.columns:
11 try:
12 csv_dataset = nm.upload_csv(
13 file = full_path,
14 name = file_name,
15 timestamp_column = 'timestamp',
16 timestamp_type = 'relative_microseconds'
17 )
18 print('Adding Dataset to Run: ', file_name)
19 quadrotor_run.add_dataset(
20 dataset = csv_dataset,
21 ref_name = file_name
22 )
23 except:
24 print('Error uploading: ', file_name)
25 print(traceback.format_exc())
Adding Dataset to Run: _vehicle_land_detected_0.csv
Adding Dataset to Run: _telemetry_status_0.csv
Adding Dataset to Run: _vehicle_angular_velocity_0.csv
Adding Dataset to Run: _sensor_combined_0.csv
Adding Dataset to Run: _cpuload_0.csv
...

On Nominal, navigate from the Runs page to the Data sources tab of the quadrotor run. You should see the ~50 uploaded log files.

datasets-in-runs

Create a workbook

Now that all of the flight data is organized as a test Run on Nominal, it can be collaboratively visualized, analyzed, and benchmarked as a reference for future flights. See the below Nominal Workbook for example (login required).

px4-data-dashboard

Appendix

Inspect ULog metadata

Run the ulog_info command to extract high-level log file parameters such as the flight computer RTOS and version.

1import subprocess
2result = subprocess.run(["ulog_info", "-v", ulog_path], capture_output=True, text=True)
3print(result.stdout)
Logging start time: 0:01:36, duration: 0:13:39
No Dropouts
Info Messages:
sys_mcu: STM32F76xxx, rev. Z
sys_name: PX4
sys_os_name: NuttX
...
Built with